0512-66188056

产品中心

技术服务 试剂盒开发

超氧阴离子(O₂-)试剂盒

货号:G0116F
规格:48样
价格:480
说明书:点击下载
提示:官网说明书如与试剂盒内纸质版有出入,请以纸质版为准!

  • 产品简介
  • 已发文章
  • 产品问答

一、产品简介:

当生物体遭受外界胁迫时,生物体内超氧阴离子等活性氧大量产生和积累,可作为生物体氧化胁迫的信号。因此在逆境条件下生物体内超氧阴离子自由基的产生,可间接反映组织细胞受损状况和抗性强弱。超氧阴离子(O2-)与羟胺反应产生NO2NO2在对氨基苯磺酸和α-萘胺作用下,生成粉红色的偶氮染料,该染料在540nm处有最大光吸收,根据A540可计算出样品中的O2-的含量。

二、所需的仪器和用品:

可见分光光度计、1mL玻璃比色皿(光径1cm)、天平、水浴锅、离心机、研钵、可调式移液器、冰、蒸馏水。

1. Mingyang He. 2021. α-Lipoic acid treatment alleviates postharvest pericarp browning of litchi fruit by regulating antioxidant ability and energy metabolism.Postharvest Biology and Technology. IF=5.5


2. Ze Yun. 2021. Effects of hydrogen water treatment on antioxidant system of litchi fruit during the pericarp browning. Food Chemistry. IF=7.5


3. 孙晓莉.贾春燕.田寿乐.文燕.王金平. .沈广宁. 2022. 外源甲基乙二醛对干旱胁迫下板栗幼苗的影响.应用生态学报.


4.Chang Wang.2022.Red light regulates metabolic pathways of soybean hypocotyl elongation and thickening.IF=6.028


5.Mingyang He.2021.α-Lipoic acid treatment alleviates postharvest pericarp browning of litchi fruit by regulating antioxidant ability and energy metabolism.IF=5.537


6.Yan Jia.2021.Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage.IF=5.224


7.Wang Yue.2020.Elevated NO2 damages the photosynthetic apparatus by inducing the accumulation of superoxide anions and peroxynitrite in tobacco seedling leaves.IF=4.872


8.Baizhao Ren.2022.Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading.IF=4.647


9.Liu, Xiaohui.2021.Study on browning mechanism of fresh-cut eggplant (Solanum melongena L.) based on metabolomics, enzymatic assays and gene expression.IF=4.38


10.Thwin Myo.2020.Ectopic overexpression of a cotton plastidial Na + transporter GhBASS5 impairs salt tolerance in Arabidopsis via increasing Na + loading and accumulation.IF=3.39


11.Chen, Siting.2022.Overexpression of the intertidal seagrass J protein ZjDjB1 enhances tolerance to chilling injury.IF=2.496


12.Yanfei Wu.2022.Valeric acid delays aril breakdown of longan (Dimocarpus longan Lour.) fruit in relation to the regulation of histone deacetylase activity.IF=6.056


13.Qiqi Chen.2022.Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato.IF=6.064


14.Chen Siting.2023.Overexpression of Zostera japonica J protein gene ZjDjB1 in Arabidopsis enhanced the tolerance to lead stress.IF=2.742


15.Chen, Siting.2022.Overexpression of the intertidal seagrass 14-3-3 gene ZjGRF1 enhances the tolerance of transgenic Arabidopsis to salt and osmotic stress.IF=2.496


16.Yuhang Chen.2022.Preharvest debagging alleviates external CO2 injury of ‘Fuji’ apple during storage by improving antioxidant capacity and energy status.IF=6.751


17.Zhengwei Liang.2022.An instant beverage rich in nutrients and secondary metabolites manufactured from stems and leaves of Panax notoginseng.IF=6.59


18.Xuejing Cao.2022.Grape BES1 transcription factor gene VvBES1-3 confers salt tolerance in transgenic Arabidopsis.IF=3.913


19.Jiao Du.2023.A prophage-encoded effector from “Candidatus Liberibacter asiaticus” targets ASCORBATE PEROXIDASE6 in citrus to facilitate bacterial infection.IF=5.52


20.Hang  Yang.2023.Artemisia baimaensis allelopathy has a negative effect on the establishment of Elymus nutans artificial grassland in natural grassland.IF=2.734


21.Erting Fu.2023.Chitosan Reduces Damages of Strawberry Seedlings under High-Temperature and High-Light Stress.IF=3.949


22.Chen Xuan.2023.In situ forming ROS-scavenging hybrid hydrogel loaded with polydopamine-modified fullerene nanocomposites for promoting skin wound healing.IF=9.429


23.Xiaomei Li.2023.Characterization of Chlorophyll Fluorescence and Antioxidant Defense Parameters of Two Gracilariopsis lemaneiformis Strains under Different Temperatures.IF=4.658


24.Yandong Xia.2023.Antagonistic Activity and Potential Mechanisms of Endophytic Bacillus subtilis YL13 in Biocontrol of Camellia oleifera Anthracnose.IF=3.282


25.Song Jianfei.2023.MhCLC-c1, a Cl channel c homolog from Malus hupehensis, alleviates NaCl-induced cell death by inhibiting intracellular Cl– accumulation.IF=5.3


26.Zhu Jiawei.2023.Isolation of three MiDi19-4 genes from mango, the ectopic expression of which confers early flowering and enhances stress tolerance in transgenic Arabidopsis.IF=4.3


27.Peng Mu.Genomic features of a plant growth-promoting endophytic Enterobacter cancerogenus JY65 dominant in microbiota of halophyte Suaeda salsa.plant and soil.IF=4.9


28.Y. Liang.Sophora tonkinensis: response and adaptation of physiological characteristics, functional traits, and secondary metabolites to drought stress.IF=3.9


1、问:官网上试剂盒规格标注的“24样”、“48样”、“96样”是什么意思呢?

     答:“24样”、“48样”、“96样”是试剂盒规格,我们定义了试剂盒可以测多少样,对于试剂盒需要的试剂量都给足的。

          “24样”、“48样”、“96样”规格的试剂盒,可以检测24个样、48个样、96个样;即分别得到24个、48个、96个数据。


2、问:官网上试剂盒检测方法中"可见分光法/紫外分光法"与“微板法”是什么区别?

     答:分光法:指使用紫外可见分光光度计检测,若无紫外可见光分光度计,订购时务必咨询公司技术。公司分光法试剂盒采用的比色皿规格是:光径:1cm,容积:1mL, 狭缝宽3mm;

           微板法:指使用全波段连续酶标仪检测;若无全波段酶标仪,订购指标时务必咨询公司技术, 本公司微板法试剂盒内送96孔普通酶标板,客户无需另外购买耗材。


3、问:分光法试剂盒与微板法试剂盒是否能通用?

     答:公司针对用户实验室具备的实验仪器条件,做了两个体系的试剂盒。两种体系试剂盒检测指标的原理一样,结果可以通用,但是不同体系的试剂盒不可以相互混匀!