一、产品简介:
糖类物质是构成植物体的重要组成成分之一,也是新陈代谢的主要原料和贮存物质。糖类在浓硫酸作用下经脱水反应生成糠醛或羟甲基糖醛,生成的糠醛或羟甲基糖醛与蒽酮脱水缩合,形成糠醛的衍生物,呈蓝绿色物质,其在可见光区620nm波长处有最大吸收,且其光吸收值在一定范围内与糖的含量成正比关系。该方法用于可溶性单糖、寡糖和多糖的含量测定,具有灵敏度高﹑简便快捷﹑适用于微量样品的测定等优点。
该方法的特点是几乎可以测定所有的糖类(包括单糖:戊糖、已糖、蔗糖、糖原、多缩葡萄糖等),所以用该方法测出的糖类含量是溶液中全部可溶性糖类含量。
二、所需的仪器和用品:
酶标仪、96孔板、水浴锅、可调式移液器、乙醇、浓硫酸(不允许快递)、研钵。
1. Liu Yang. 2020. Evaluating physiological changes of grass and semishrub species with seasonality for understanding the process of shrub encroachment in semiarid grasslands. Functional Plant Biology. IF=3.1
2. Jing Yang.2021. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide Biochemistry and Physiology. IF=3.9
3. Nannan Zhao. 2021. Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut (Arachis hypogaea L.). Frontiers in Genetics. IF=4.6
4. Xiaodong Zheng. 2021. Resveratrol improves the iron defciency adaptation of Malus baccata seedlings by regulating iron absorption. BMC Plant Biology. IF=4.2
5. Zheng Wang.2022. Comparing Efficacy of Different Biostimulants for Hydroponically Grown Lettuce (Lactuca sativa L.). Agronomy. IF=3.40
6. 孙晓莉.贾春燕.田寿乐.文燕.王金平.冉 昆.沈广宁. 2022. 外源甲基乙二醛对干旱胁迫下板栗幼苗的影响.应用生态学报.
7.Zaid Khan.2022.How Biochar Affects Nitrogen Assimilation and Dynamics by Interacting Soil and Plant Enzymatic Activities: Quantitative Assessment of 2 Years Potted Study in a Rapeseed-Soil System..IF=.6.627
8.Ming Gao.2022.Sex-specific physiological and biochemical responses of Litsea cubeba under waterlogging stress.IF=6.028
9.Yi Zhang.2022.Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3.4” modulating cold tolerance.IF=6.028
10.Tingting Li.2021.Resveratrol Alleviates the KCl Salinity Stress of Malus hupehensis Rhed.IF=5.754
11.Ali Raza.2022.Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed ( Brassica napus L.) Seedlings.IF=5.754
12.Raza Ali.2021.Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.).IF=5.754
13.Danfeng Tang.2021.Identification of Differentially Expressed Genes and Pathways Involved in Growth and Development of Mesona chinensis Benth Under Red- and Blue-Light Conditions.IF=5.754
14.Feng Xiao.2022.Trade-off between shade tolerance and chemical resistance of invasive Phytolacca americana under different light levels compared with its native and exotic non-invasive congeners.IF=5.545
15.Yan Jia.2021.Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage.IF=5.224
16.Sun, Zhijuan.2022.Brassinolide alleviates Fe deficiency-induced stress by regulating the Fe absorption mechanism in Malus hupehensis Rehd.IF=4.964
17.Zaid Khan.2021.Compensation of high nitrogen toxicity and nitrogen deficiency with biochar amendment through enhancement of soil fertility and nitrogen use efficiency promoted rice growth and yield.IF=4.745
18.Shifa Xiong.2022.Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China.IF=4.658
19.Zhao Nannan.2021.Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut (Arachis hypogaea L.).IF=4.599
20.Zheng Wang.2022.Comparing Efficacy of Different Biostimulants for Hydroponically Grown Lettuce (Lactuca sativa L.).IF=3.949
21.Xiaodong Zheng.2020.Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd.IF=3.72
22.Changchang Shao.2022.Physiological and Biochemical Dynamics of Pinus massoniana Lamb. Seedlings under Extreme Drought Stress and during Recovery.IF=3.282
23.Cheng-zhe ZHOU.2022.Transcriptome and phytochemical analyses reveal the roles of characteristic metabolites in the taste formation of white tea during the withering process.IF=2.848
24.Liu Yang.2020.Evaluating physiological changes of grass and semishrub species with seasonality for understanding the process of shrub encroachment in semiarid grasslands.IF=2.617
25.Chen, Siting.2022.Overexpression of the intertidal seagrass J protein ZjDjB1 enhances tolerance to chilling injury.IF=2.496
26.Chen, Siting.2022.Overexpression of Zostera japonica 14-3-3 gene ZjGRF1 enhances the resistance of transgenic Arabidopsis to copper stress.IF=2.742
27.Chen, Siting.2022.Overexpression of the intertidal seagrass 14-3-3 gene ZjGRF1 enhances the tolerance of transgenic Arabidopsis to salt and osmotic stress.IF=2.496
28.Cheng Zhang.2022.A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea.IF=5.561
29.Sizhou Chen.2022.Hyperspectral machine-learning model for screening tea germplasm resources with drought tolerance.IF=6.627
30.Xiao Yang.2022.Pre-harvest Nitrogen Limitation and Continuous Lighting Improve the Quality and Flavor of Lettuce (Lactuca sativa L.) under Hydroponic Conditions in Greenhouse.IF=5.895
31.Hang Yang.2023.Artemisia baimaensis allelopathy has a negative effect on the establishment of Elymus nutans artificial grassland in natural grassland.IF=2.734
32.Liu, Yun-Shan.2023.Asymmetric inter-specific competition between invasive Phytolacca americana and its native congener.IF=1.99
33.Liu B. S.2023.Effects of Light Intensity on Morphological Structure and Physiological Characteristics of Gleditsia sinensis Seedlings.IF=1.419
34.Chen Siting.2023.Overexpression of Zostera japonica J protein gene ZjDjB1 in Arabidopsis enhanced the tolerance to lead stress.IF=2.742
35.Chongxi Liu.2023.Integrated Physiological, Transcriptomic, and Metabolomic Analysis Reveals the Mechanism of Guvermectin Promoting Seed Germination in Direct-Seeded Rice under Chilling Stress.IF=5.895
36.Honglang Duan.2023.Root relative water content is a potential signal for impending mortality of a subtropical conifer during extreme drought stress.IF=7.3
37.Xiao Han.2023.Transcriptome Revealed the Effect of Shading on the Photosynthetic Pigment and Photosynthesis of Overwintering Tea Leaves.IF=3.7
38.Tang Danfeng.2023.Integrating LC-MS and HS-GC-MS for the metabolite characterization of the Chinese medicinal plant Platostoma palustre under different processing methods.IF=6.59
39.Ziyan Liang.2023.Contrasting Responses and Phytoremediation Potential of Two Poplar Species to Combined Strontium and Diesel Oil Stress.IF=4.658
40.Zhijuan Sun.2023.Melatonin enhances KCl salinity tolerance by maintaining K+ homeostasis in Malus hupehensis.IF=13.8
41.Ying Liang.2023.Interactive effects of light quality and nitrate supply on growth and metabolic processes in two lettuce cultivars (Lactuca sativa L.).IF=5.7
42.Hao Chen.2023.Enhancing the Adaptability of Tea Plants (Camellia sinensis L.) to High-Temperature Stress with Small Peptides and Biosurfactants.IF=4.5
43.Meng Yang.2023.Transcriptomic Response to Drought Stress in Populus davidiana Dode.IF=2.9
44.Qikang Wang.Differences in seed characteristics, germination and seedling growth of Suaeda salsa grown in intertidal zone and on saline inland.Frontiers in Plant Science.IF=5.6
1、问:官网上试剂盒规格标注的“24样”、“48样”、“96样”是什么意思呢?
答:“24样”、“48样”、“96样”是试剂盒规格,我们定义了试剂盒可以测多少样,对于试剂盒需要的试剂量都给足的。
“24样”、“48样”、“96样”规格的试剂盒,可以检测24个样、48个样、96个样;即分别得到24个、48个、96个数据。
2、问:官网上试剂盒检测方法中"可见分光法/紫外分光法"与“微板法”是什么区别?
答:分光法:指使用紫外可见分光光度计检测,若无紫外可见光分光度计,订购时务必咨询公司技术。公司分光法试剂盒采用的比色皿规格是:光径:1cm,容积:1mL, 狭缝宽3mm;
微板法:指使用全波段连续酶标仪检测;若无全波段酶标仪,订购指标时务必咨询公司技术, 本公司微板法试剂盒内送96孔普通酶标板,客户无需另外购买耗材。
3、问:分光法试剂盒与微板法试剂盒是否能通用?
答:公司针对用户实验室具备的实验仪器条件,做了两个体系的试剂盒。两种体系试剂盒检测指标的原理一样,结果可以通用,但是不同体系的试剂盒不可以相互混匀!