一、产品简介:
过氧化氢(H2O2)是重要的活性氧之一,不仅具有损伤生物大分子、产生细胞毒害的能力, 而且还可作为信号分子,在生物和非生物胁迫应激、细胞程序性死亡以及生长发育调控过程中起重要作用。它与钛盐反应生成过氧化物—钛复合物黄色沉淀,可被浓硫酸溶解后,在波长415nm波长下有最大吸收峰。其颜色深浅与H2O2浓度成线性关系。
二、需自备的仪器和用品:
可见分光光度计、1mL玻璃比色皿(光径1cm)、台式离心机、可调式移液器、丙酮、研钵和冰。
1. Jing Yang.2021. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide Biochemistry and Physiology. IF=3.9
2. Yan Jia. 2022. Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage. Field Crops Research. Yan Jia. IF=5.22
3. Yun-Ze Chen. 2022. Transcriptomic analysis of interactions between Lymantria dispar larvae and carvacrol.Pesticide Biochemistry and Physiology. IF=3.96
4. 牟凤利,杨京民,刘翠,刘才鑫,刘梅,陈建军,祖艳群,王吉秀.2021.野生小花南芥体内 AsA-GSH 循环对土壤 Cd、Pb 胁迫的响应.农业环境科学学报.
5.孙晓莉.贾春燕.田寿乐.文燕.王金平.冉 昆.沈广宁. 2022. 外源甲基乙二醛对干旱胁迫下板栗幼苗的影响.应用生态学报.
6.Chang Wang.2022.Red light regulates metabolic pathways of soybean hypocotyl elongation and thickening.IF=6.028
7.Ali Raza.2022.Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed ( Brassica napus L.) Seedlings.IF=5.754
8.Sundas Saher Mehmood.2021.Integrated analysis of transcriptomics and proteomics provides insights into the molecular regulation of cold response in Brassica napus.IF=5.545
9.Yan Jia.2021.Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage.IF=5.224
10.Baizhao Ren.2022.Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading.IF=4.647
11.Liu, Xiaohui.2021.Study on browning mechanism of fresh-cut eggplant (Solanum melongena L.) based on metabolomics, enzymatic assays and gene expression.IF=4.38
12.Xiaohui Liu.2022.Metabolomic Analysis, Combined with Enzymatic and Transcriptome Assays, to Reveal the Browning Resistance Mechanism of Fresh-Cut Eggplant.IF=4.35
13.Yun-Ze Chen.2021.Transcriptomic analysis of interactions between Lymantria dispar larvae and carvacrol.IF=3.963
14.Hao Yan.2022.LpNAC6 reversely regulates the alkali tolerance and drought tolerance of Lilium pumilum.IF=3.549
15.Thwin Myo.2020.Ectopic overexpression of a cotton plastidial Na + transporter GhBASS5 impairs salt tolerance in Arabidopsis via increasing Na + loading and accumulation.IF=3.39
16.Yijing Sun.2020.WRKY33-PIF4 loop is required for the regulation of H2O2 homeostasis.IF=2.985
17.Yanfei Wu.2022.Enhanced resistance in ‘shatang’ mandarin fruit against Penicillium italicum caused by 2-methoxy-1,4-naphthoquinone.IF=2.741
18.Chen, Siting.2021.Overexpression of seagrass DnaJ gene ZjDjB1 enhances the thermotolerance of transgenic arabidopsis thaliana.IF=2.391
19.Xiao, Kai.2022.Genome-wide identification of polyphenol oxidase (PPO) family members in eggplant (Solanum melongena L.) and their expression in response to low temperature.IF=2.138
20.Jiajia Wang.2022.LEAF TIP RUMPLED 1 Regulates Leaf Morphology and Salt Tolerance in Rice.IF=6.208
21.Yanfei Wu.2022.Valeric acid delays aril breakdown of longan (Dimocarpus longan Lour.) fruit in relation to the regulation of histone deacetylase activity.IF=6.056
22.Mengzhuo Zhang.2022.Physiological and Transcriptome Analyses of CaCl2 Treatment to Alleviate Chilling Injury in Pineapple.IF=4.658
23.Yigong Zhang.2022.Structure, development, and the salt response of salt bladders in Chenopodium album L..IF=6.627
24.Qiqi Chen.2022.Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato.IF=6.064
25.Yu-Xuan Wu.2022.Inhibitory effect and mechanism of action of juniper essential oil on gray mold in cherry tomatoes.IF=6.064
26.Zhen Wang.2022.DEMETHYLATION REGULATOR 1 regulates DNA demethylation of the nuclear and mitochondrial genomes.IF=9.106
27.Chen, Siting.2022.Overexpression of the intertidal seagrass 14-3-3 gene ZjGRF1 enhances the tolerance of transgenic Arabidopsis to salt and osmotic stress.IF=2.496
28.Yan Li.2022.Melatonin alleviates arsenite toxicity by decreasing the arsenic accumulation in cell protoplasts and increasing the antioxidant capacity in rice.IF=8.943
29.Xuejing Cao.2022.Grape BES1 transcription factor gene VvBES1-3 confers salt tolerance in transgenic Arabidopsis.IF=3.913
30.Jiajia Wang.2023.SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.).IF=13.263
31.Qibin Wu.2023.Genome-wide characterization of sugarcane catalase gene family identifies a ScCAT1 gene associated disease resistance.IF=8.025
32.Feifei An.2023.Flavonoid accumulation modulates the responses of cassava tuberous roots to postharvest physiological deterioration.IF=6.751
33.Jiao Du.2023.A prophage-encoded effector from “Candidatus Liberibacter asiaticus” targets ASCORBATE PEROXIDASE6 in citrus to facilitate bacterial infection.IF=5.52
34.Na Li.2023.Phytic acid is a new substitutable plant-derived antifungal agent for the seedling blight of Pinus sylvestris var. mongolica caused by Fusarium oxysporum..IF=4.966
35.Li, Yanmei.2023.VaSUS2 confers cold tolerance in transgenic tomato and Arabidopsis by regulation of sucrose metabolism and ROS homeostasis.IF=4.964
36.Hang Yang.2023.Artemisia baimaensis allelopathy has a negative effect on the establishment of Elymus nutans artificial grassland in natural grassland.IF=2.734
37.Zhiyin Jiao.2023.Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway.IF=6.627
38.Yibo Jing.2023.PS II Subunit P in Lilium pumilum (LpPsbP) Confers Saline-Alkali Resistance to the Plant by Scavenging ROS.IF=6.208
39.Hao Wu.2023.Disruption of LEAF LESION MIMIC 4 affects ABA synthesis and ROS accumulation in rice.IF=4.647
40.Song Jianfei.2023.MhCLC-c1, a Cl channel c homolog from Malus hupehensis, alleviates NaCl-induced cell death by inhibiting intracellular Cl– accumulation.IF=5.3
41.Zhu Jiawei.2023.Isolation of three MiDi19-4 genes from mango, the ectopic expression of which confers early flowering and enhances stress tolerance in transgenic Arabidopsis.IF=4.3
1、问:官网上试剂盒规格标注的“24样”、“48样”、“96样”是什么意思呢?
答:“24样”、“48样”、“96样”是试剂盒规格,我们定义了试剂盒可以测多少样,对于试剂盒需要的试剂量都给足的。
“24样”、“48样”、“96样”规格的试剂盒,可以检测24个样、48个样、96个样;即分别得到24个、48个、96个数据。
2、问:官网上试剂盒检测方法中"可见分光法/紫外分光法"与“微板法”是什么区别?
答:分光法:指使用紫外可见分光光度计检测,若无紫外可见光分光度计,订购时务必咨询公司技术。公司分光法试剂盒采用的比色皿规格是:光径:1cm,容积:1mL, 狭缝宽3mm;
微板法:指使用全波段连续酶标仪检测;若无全波段酶标仪,订购指标时务必咨询公司技术, 本公司微板法试剂盒内送96孔普通酶标板,客户无需另外购买耗材。
3、问:分光法试剂盒与微板法试剂盒是否能通用?
答:公司针对用户实验室具备的实验仪器条件,做了两个体系的试剂盒。两种体系试剂盒检测指标的原理一样,结果可以通用,但是不同体系的试剂盒不可以相互混匀!