一、产品简介:
过氧化物酶(POD,EC 1.11.1.7)广泛存在于动物、植物、微生物和培养细胞中, 是普遍存在的一种重要的氧化还原酶,其活性高低与抗性密切相关。在过氧化物酶催化 下,H2O2氧化愈创木酚生成红棕色产物,该产物在 470nm 处有最大光吸收,故可通过 测 470nm 下吸光值变化测定过氧化物酶活性。
二、需自备的仪器和用品:
可见分光光度计、1mL 玻璃比色皿(光径 1cm)、台式离心机、可调式移液器、研钵
1. Liu Yang. 2020. Evaluating physiological changes of grass and semishrub species with seasonality for understanding the process of shrub encroachment in semiarid grasslands. Functional Plant Biology. IF=3.1
2. Bin Cheng.2020. Effects of Multiple Planting Densities on Lignin Metabolism and Lodging Resistance of the Strip Intercropped Soybean Stem. Agronomy. IF=3.4
3. Nannan Zhao. 2021. Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut (Arachis hypogaea L.). Frontiers in Genetics. IF=4.6
4. Yan Jia. 2022. Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage. Field Crops Research. Yan Jia. IF=5.22
5. Sugar Metabolism and Transcriptome Analysis Reveal Key Sugar Transporters during Camellia oleifera Fruit Development. International Journal of Molecular Sciences. IF=5.92
6. Yun-Ze Chen. 2022. Transcriptomic analysis of interactions between Lymantria dispar larvae and carvacrol.Pesticide Biochemistry and Physiology. IF=3.96
7. Na Jiang.2022. Responses of antioxidant enzymes and key resistant substances in perennial ryegrass (Lolium perenne L.) to cadmium and arsenic stresses.BMC Plant Biology. IF=4.22
8. Yao Liu. 2022. Methionine enhances disease resistance of jujube fruit against postharvest black spot rot by activating lignin biosynthesis.Postharvest Biology and Technology.
9. 孙晓莉.贾春燕.田寿乐.文燕.王金平.冉 昆.沈广宁. 2022. 外源甲基乙二醛对干旱胁迫下板栗幼苗的影响.应用生态学报.
10.Yao Liu.2022.Methionine enhances disease resistance of jujube fruit against postharvest black spot rot by activating lignin biosynthesis.IF=6.751
11.Yan Wang.2022.Regulating Root Fungal Community Using Mortierella alpina for Fusarium oxysporum Resistance in Panax ginseng.IF=6.064
12.Ming Gao.2022.Sex-specific physiological and biochemical responses of Litsea cubeba under waterlogging stress.IF=6.028
13.Hubiao Jiang.2021.Effect of the Nanoparticle Exposures on the Tomato Bacterial Wilt Disease Control by Modulating the Rhizosphere Bacterial Community.IF=5.924
14.Tingting Li.2021.Resveratrol Alleviates the KCl Salinity Stress of Malus hupehensis Rhed.IF=5.754
15.Ali Raza.2022.Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed ( Brassica napus L.) Seedlings.IF=5.754
16.Raza Ali.2021.Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.).IF=5.754
17.Dao-Jun Guo.2021.Differential Protein Expression Analysis of Two Sugarcane Varieties in Response to Diazotrophic Plant Growth-Promoting Endophyte Enterobacter roggenkampii ED5.IF=5.754
18.Jiang, Na.2022.Responses of antioxidant enzymes and key resistant substances in perennial ryegrass (Lolium perenne L.) to cadmium and arsenic stresses.IF=5.26
19.Yan Jia.2021.Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage.IF=5.224
20.Liu, Yonglin.2022.Sulfur fertiliser enhancement of Erigeron breviscapus (Asteraceae) quality by improving plant physiological responses and reducing soil cadmium bioavailability.IF=5.19
21.Shifa Xiong.2022.Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China.IF=4.658
22.Ying Zhou.2022.Proteomic Investigation of Molecular Mechanisms in Response to PEG-Induced Drought Stress in Soybean Roots.IF=4.658
23.Zhao Nannan.2021.Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut (Arachis hypogaea L.).IF=4.599
24.Liu, Xiaohui.2021.Study on browning mechanism of fresh-cut eggplant (Solanum melongena L.) based on metabolomics, enzymatic assays and gene expression.IF=4.38
25.Ting Fang.2022.Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage.4.35
26.Hong Zhu.2022.The Sweetpotato Voltage-Gated K+ Channel β Subunit, KIbB1, Positively Regulates Low-K+ and High-Salinity Tolerance by Maintaining Ion Homeostasis.IF=4.141
27.Yun-Ze Chen.2021.Transcriptomic analysis of interactions between Lymantria dispar larvae and carvacrol.IF=3.963
28.Xiaodong Zheng.2020.Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd.IF=3.72
29.Li, Luhua.2022.Wheat TaANS-6D positively regulates leaf senescence through the abscisic acid mediated chlorophyll degradation in tobacco.IF=3.412
30.Lei Zhang.2021.Glutathione, carbohydrate and other metabolites of Larix olgensis A. Henry reponse to polyethylene glycol-simulated drought stress.IF=3.24
31.Liu Yang.2020.Evaluating physiological changes of grass and semishrub species with seasonality for understanding the process of shrub encroachment in semiarid grasslands.IF=2.617
32.Li, Luhua.2022.Overexpression of TaLAX3-1B alters the stomatal aperture and improves the salt stress resistance of tobacco.IF=2.316
33.Jie Cui.2022.Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations.IF=6.208
34.Jiajia Wang.2022.LEAF TIP RUMPLED 1 Regulates Leaf Morphology and Salt Tolerance in Rice.IF=6.208
35.Yigong Zhang.2022.Structure, development, and the salt response of salt bladders in Chenopodium album L..IF=6.627
36.Dan Wang.2022.Genome-wide analysis of the homeodomain-leucine zipper family in Lotus japonicus and the overexpression of LjHDZ7 in Arabidopsis for salt tolerance..IF=6.627
37.Chen, Siting.2022.Overexpression of Zostera japonica 14-3-3 gene ZjGRF1 enhances the resistance of transgenic Arabidopsis to copper stress.IF=2.742
38.Juan Wang.2022.Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin.IF=7.675
39.Zhanyu Chen.2022.Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr.IF=6.208
40.Kebin Yang.2022.Identification of KFB Family in Moso Bamboo Reveals the Potential Function of PeKFB9 Involved in Stress Response and Lignin Polymerization.IF=6.208
41.Chen, Siting.2022.Overexpression of the intertidal seagrass 14-3-3 gene ZjGRF1 enhances the tolerance of transgenic Arabidopsis to salt and osmotic stress.IF=2.496
42.He Jiuxing.2022.Cellobiose elicits immunity in lettuce conferring resistance against.IF=7.298
43.Weidong Zhao.2022.Cloning and Characterization of Two Novel PR4 Genes from Picea asperata.IF=6.208
44.Qibin Wu.2023.Genome-wide characterization of sugarcane catalase gene family identifies a ScCAT1 gene associated disease resistance.IF=8.025
45.Feifei An.2023.Flavonoid accumulation modulates the responses of cassava tuberous roots to postharvest physiological deterioration.IF=6.751
46.Ting Li.2023.Transcription factor CsERF1B regulates postharvest citrus fruit resistance to Penicillium digitatum..IF=6.751
47.Liu, Xinyu.2023.Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes.IF=4.996
48.Qin, Ruofan.2023.Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch.IF=4.996
49.Li, Yanmei.2023.VaSUS2 confers cold tolerance in transgenic tomato and Arabidopsis by regulation of sucrose metabolism and ROS homeostasis.IF=4.964
50.Hang Yang.2023.Artemisia baimaensis allelopathy has a negative effect on the establishment of Elymus nutans artificial grassland in natural grassland.IF=2.734
51.Zhiyin Jiao.2023.Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway.IF=6.627
52.Fulei Mo.2023.Genome-wide identification and expression analysis of SLAC1 gene family in tomato (Solanum lycopersicum) and the function of SlSLAC1–6 under cold stress.IF=4.342
53.Xingang Li.2023.GmGSTU23 Encoding a Tau Class Glutathione S-Transferase Protein Enhances the Salt Tolerance of Soybean (Glycine max L.).IF=6.208
54.Jinxin Liu.2023.Biocontrol ability and action mechanism of Bacillus amyloliquefaciens Baf1 against Fusarium incarnatum causing fruit rot in postharvest muskmelon (cv. Yugu) fruit.IF=6.056
55.Liu B. S.2023.Effects of Light Intensity on Morphological Structure and Physiological Characteristics of Gleditsia sinensis Seedlings.IF=1.419
56.Shuqing Guo.2023.Concurrence of microplastics and heat waves reduces rice yields and disturbs the agroecosystem nitrogen cycle.IF=14.224
57.Lei Wang.2023.Dark septate endophyte Exophiala pisciphila promotes maize growth and alleviates cadmium toxicity.IF=6.064
58.Qing-Qing Shen.2023.The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum.IF=5.437
59.Xiaomei Li.2023.Characterization of Chlorophyll Fluorescence and Antioxidant Defense Parameters of Two Gracilariopsis lemaneiformis Strains under Different Temperatures.IF=4.658
60.Chen Siting.2023.Overexpression of Zostera japonica J protein gene ZjDjB1 in Arabidopsis enhanced the tolerance to lead stress.IF=2.742
61.An, Peiqi.2022.Genetic transformation of LoHDZ2 and analysis of its function to enhance stress resistance in Larix olgensis.IF=4.996
62.Daowu Hu.2022.Identification and Characterization of the Growth-Regulating Factors-Interacting Factors in Cotton.IF=4.772
63.Yangyang Sun.2022.Phenylpropanoid metabolism in relation to peel browning development of cold-stored ‘Nanguo’ pears.IF=4.729
64.Caiyun Xiong.2022.Physiological and Molecular Characteristics of Southern Leaf Blight Resistance in Sweet Corn Inbred Lines.IF=6.208
65.Hao Wu.2023.Disruption of LEAF LESION MIMIC 4 affects ABA synthesis and ROS accumulation in rice.IF=4.647
66.Cun Yu.2023.Trichoderma longibrachiatum Inoculation Improves Drought Resistance and Growth of Pinus massoniana Seedlings through Regulating Physiological Responses and Soil Microbial Community.IF=4.7
67.Hong Zhu.2023.The Sweet Potato K+ Transporter IbHAK11 Regulates K+ Deficiency and High Salinity Stress Tolerance by Maintaining Positive Ion Homeostasis.IF=4.5
68.Jia Shuao.2023.Appropriate carbon–nitrogen ratio is beneficial to the accumulation of 9-cis-β-carotene during Dunaliella salina cultivation.IF=3.3
69.Xu Simin.2023.Enhancing the Thermotolerance of Isochrysis zhangjiangensis Through Co-culturing With Algoriphagus marincola.IF=3
70.Chongxi Liu.2023.Integrated Physiological, Transcriptomic, and Metabolomic Analysis Reveals the Mechanism of Guvermectin Promoting Seed Germination in Direct-Seeded Rice under Chilling Stress.IF=5.895
71.Zhijuan Sun.2023.Melatonin enhances KCl salinity tolerance by maintaining K+ homeostasis in Malus hupehensis.IF=13.8
72.Junliang Li.2023.Unique Features of the m6A Methylome and Its Response to Salt Stress in the Roots of Sugar Beet (Beta vulgaris).IF=5.6
73.Junliang Li.2023.Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris).IF=5.23
74.Hao Chen.2023.Enhancing the Adaptability of Tea Plants (Camellia sinensis L.) to High-Temperature Stress with Small Peptides and Biosurfactants.IF=4.5
75.Yingjie Yang.2023.Mineral and Metabolome Analyses Provide Insights into the Cork Spot Disorder on ‘Akizuki’ Pear Fruit.IF=3.1
76.Meng Yang.2023.Transcriptomic Response to Drought Stress in Populus davidiana Dode.IF=2.9
1、问:官网上试剂盒规格标注的“24样”、“48样”、“96样”是什么意思呢?
答:“24样”、“48样”、“96样”是试剂盒规格,我们定义了试剂盒可以测多少样,对于试剂盒需要的试剂量都给足的。
“24样”、“48样”、“96样”规格的试剂盒,可以检测24个样、48个样、96个样;即分别得到24个、48个、96个数据。
2、问:官网上试剂盒检测方法中"可见分光法/紫外分光法"与“微板法”是什么区别?
答:分光法:指使用紫外可见分光光度计检测,若无紫外可见光分光度计,订购时务必咨询公司技术。公司分光法试剂盒采用的比色皿规格是:光径:1cm,容积:1mL, 狭缝宽3mm;
微板法:指使用全波段连续酶标仪检测;若无全波段酶标仪,订购指标时务必咨询公司技术, 本公司微板法试剂盒内送96孔普通酶标板,客户无需另外购买耗材。
3、问:分光法试剂盒与微板法试剂盒是否能通用?
答:公司针对用户实验室具备的实验仪器条件,做了两个体系的试剂盒。两种体系试剂盒检测指标的原理一样,结果可以通用,但是不同体系的试剂盒不可以相互混匀!